Dasar Konversi Energi Listrik

20.28 0 Comments


Dalam post ini akan membahas beberapa jenis Energi yang dapat dikonversikan menjadi Energi Listrik.

1. Konversi Energi Panas menjadi Energi Listrik.

Termoelektrik

Prinsip kerja dari Termoelektrik adalah dengan berdasarkan Efek Seebeck yaitu “jika 2 buah logam yang berbeda disambungkan salah satu ujungnya, kemudian diberikan suhu yang berbeda pada sambungan, maka terjadi perbedaan tegangan pada ujung yang satu dengan ujung yang lain”. ( Muhaimin, 1993). Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua logam tersebut lalu diletakkan jarum kompas. Ketika sisi logam tersebut dipanaskan, jarum kompas ternyata bergerak. Belakangan diketahui, hal ini terjadi karena aliran listrik yang terjadi pada logam menimbulkan medan magnet. Medan magnet inilah yang menggerakkan jarum kompas. Fenomena tersebut kemudian dikenal dengan efek Seebeck. Penemuan Seebeck ini memberikan inspirasi pada Jean Charles Peltier untuk melihat kebalikan dari fenomena tersebut. Dia mengalirkan listrik pada dua buah logam yang direkatkan dalam sebuah rangkaian. Ketika arus listrik dialirkan, terjadi penyerapan panas pada sambungan kedua logam tersebut dan pelepasan panas pada sambungan yang lainnya. Pelepasan dan penyerapan panas ini saling berbalik begitu arah arus dibalik. Penemuan yang terjadi pada tahun 1934 ini kemudian dikenal dengan efek Peltier. Efek Seebeck dan Peltier inilah yang kemudian menjadi dasar pengembangan teknologi termoelektrik.Terdapat tiga sifat bahan Termoelektrik yang penting, yaitu :
1. Koefisien Seebeck.
2. Konduktifitas panas.
3. Resistivitas.

Termionik

Pembangkit listrik dengan termionik adalah mengubah energi panas menjadi energi listrik dengan menggunakan emisi termionik. Emisi termionik adalah terlepasnya electron dari permukaan logam yang lebih panas ke permukaan logam lainnya yang dipanasi bersama sama. Emosi Termionik juga dikenal sebagai “Emisi Thermal Elektron”. Proses ini sangat penting dalam pengoperasian berbagai perangkat elektronik dan dapat digunakan untuk pembangkit daya atau pendinginanElektron electron bebas dari emitter mempunyai energy yang seimbang dengan level ferminya. Elektron elektron ini dapat meninggalkan katoda, jumlah dari energy panas yang disuplai padanya akan sama dengan fungsi kerja katoda Ø c. Elektron-elekron yang diemisikan akan menuju ke arah kolektor (anoda), dengan kerugian energy yang kecil. Pada anoda, elektron. elektron yang diserap akan membangkitkan energi Ø a dalam bentuk panas, hal ini menaikkan level Fermi dari anoda, Karena Ø a < Ø c maka selisihnya (Ø c – Ø a) dapat ditranformasikan menjadi energy listrik. Bahan katoda hendaknya mempunyai kemampuan emisi yang cukup pada suhu kerja, mempunyai konduktifitas listrik maupun konduktifitas panas yang tinggi dan stabil terhadap pengaruh kimia. Bahan yang relative memenuhi syarat di atas antara lain: W,Mo, dan Ta yang permukaannya dilapisi Ce untuk menghindari penguapan dan mendapatkan emisi yang lebih baik pada suhu sekitar 2000° C. Bahan bahan lainnya adalah Barium Oksida, Uranium Karbida yang dicampur dengan Stontium dan Calsium Oksida.
Bahan bahan yang digunakan sebagai anoda harus memenuhi syarat:
kemampuan emisi ternyata rendah, restistivitas rendah, sifat kimia maupun mekanismenya baik. Bahan bahan yang digunakan untuk anoda antara lain: Cu, Ni, Ag yang dilapisi Ce. ( Muhaimin, 1993).


2. Konversi Energi Kimia menjadi Energi Listrik.

Baterai merupkan kombinasi dua atau lebih sel elektrokimia yang bisa menyimpan energi dan kemudian merubahnya menjadi energi listrik. Baterai merupakan alat yang merubah energi kimia menjadi energi listrik. Baterai terdiri dari satu atau lebih voltaic cell (tergantung besarnya voltase yang diinginkan contohnya baterai aki 6 Volt atau 12 Volt) . Masing-masing voltaic cell terdiri dari dua half cells yang dihubungkan secara seri oleh penghantar elektrolit. Satu half cells mempunyai elektroda positif (katoda) yang satunya elektroda negatif (atoda). Daya baterai di dapat dari reaksi reduksi dan oksidasi.
Reduksi terjadi pada di katoda dan oksidasi terjadi di katoda. Elektroda tersebut tidak bersentuhan dan arus listrik dihubungkan dengan elektrolit. Elektrolit dapat berupa cairan atau padat. Antara satu sel dengan sel lainnya dipisahkan oleh dinding penyekat yang terdapat dalam bak baterai, artinya tiap ruang pada sel tidak berhubungan karena itu cairan elektrolit pada tiap sel juga tidak berhubungan (dinding pemisah antar sel tidak boleh ada yang bocor/merembes). Di dalam satu sel terdapat susunan pelat pelat yaitu beberapa pelat untuk kutub positif (antar pelat dipisahkan oleh kayu, ebonit atau plastik, tergantung teknologi yang digunakan) dan beberapa pelat untuk kutub negatif. Bahan aktif dari plat positif terbuat dari oksida timah coklat (PbO2) sedangkan bahan aktif dari plat negatif ialah timah (Pb) berpori (seperti bunga karang).Pelat-pelat tersebut terendam oleh cairan elektrolit yaitu asam sulfat (H2SO4).


3. Konversi Energi Matahari menjadi Energi Listrik.

Energi matahari merupakan sumber energi yang sangat besar di dunia ini. Energi matahari berpotensi mampu menyediakan kebutuhan energi dunia dalam waktu yang lama jika dimnafaatkan semaksimal mungkin. Pemanfaatan energi matahari secara langsung dapat dilakukan untuk memanaskan atau mendinginkan. Salah satu pemanfaatan matahari adalah pembangkit listrik tenaga panas matahari. Mekanisme yang digunakan adalah kaca-kaca besar yang digunakan mengkonsentrasikan  cahaya matahari ke satu garis atau titik. Panas yang ditangkap, dimanfaatkan untuk menghasilkan uap panas. Tekanan uap panas yang tinggi digunakan untuk menjalankan turbin agar menghasilkan listrik. Selain dengan tekanan uap panas, cahaya matahari dapat dimanfaatkan sebagai sumber listrik dengan menggunakan photovoltaic. Prinsip photovoltaic melibatkan pembangkit listrik dari cahaya, penggunaan bahan semi konduktor yang dapat disesuaikan untuk melepas elektron (partikel bermuatan negatif) yang membnetuk dasar listrik. Bahan semi konduktor yang paling umum digunakan adalah silikon. Sel photovoltaic mempunyai sedikitnya dua lapisan semi konduktor, lapisan pertama bermuatan positif dan lapisan kedua bermuatan negatif. Ketika cahaya bersinar pada semi konduktor, muatan listrik menyeberang sambungan di antara dua lapisan menyebabkan listrik mengalir, membangkitkan arus DC.

4. Konversi Energi Mekanik Menjadi Energi Listrik.

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit listrik. Walau generator dan motor punya banyak kesamaan, tapi motor adalah alat yang mengubah energi listrik menjadi energi mekanik. Generator mendorong muatan listrik untuk bergerak melalui sebuah sirkuit listrik eksternal, tapi generator tidak menciptakan listrik yang sudah ada di dalam kabel lilitannya. Hal ini bisa dianalogikan dengan sebuah pompa air, yang menciptakan aliran air tapi tidak menciptakan air di dalamnya. Sumber energi mekanik bisa berupa resiprokat maupun turbin mesin uap, air yang jatuh melakui sebuah turbin maupun kincir air, mesin pembakaran dalam, turbin angin, engkol tangan, energi surya atau matahari, udara yang dimampatkan, atau apa pun sumber energi mekanik yang lain. Dinamo adalah generator listrik pertama yang mampu mengantarkan tenaga untuk industri, dan masih merupakan generator terpenting yang digunakan pada abad ke-21. Dinamo menggunakan prinsip elektromagnetisme untuk mengubah putaran mekanik menjadi listrik arus bolak-balik. Dinamo pertama berdasarkan prinsip Faraday dibuat pada 1832 oleh Hippolyte Pixii, seorang pembuat peralatan dari Perancis. Alat ini menggunakan magnet permanen yang diputar oleh sebuah "crank". Magnet yang berputar diletakaan sedemikian rupa sehingga kutub utara dan selatannya melewati sebongkah besi yang dibungkus dengan kawat. Pixii menemukan bahwa magnet yang berputar memproduksi sebuah pulsa arus di kawat setiap kali sebuah kutub melewati kumparan. Lebih jauh lagi, kutub utara dan selatan magnet menginduksi arus di arah yang berlawanan. Dengan menambah sebuah komutator, Pixii dapat mengubah arus bolak-balik menjadi arus searah.


Dan pada post ini akan sedikit membahas tentang Sumber Energi Terbarukan.

1. Solar Energy

Matahari adalah sumber kita yang paling kuat energi. Sinar matahari, atau energi surya, dapat digunakan untuk pemanasan rumah, pencahayaan dan pendinginan dan bangunan lainnya, pembangkit listrik, pemanas air, dan berbagai proses industri. Sebagian besar bentuk energi terbarukan berasal baik secara langsung atau tidak langsung dari matahari. Sebagai contoh, panas dari matahari menyebabkan angin bertiup, memberikan kontribusi terhadap pertumbuhan pohon dan tanaman lain yang digunakan untuk energi biomassa, dan memainkan peran penting dalam siklus penguapan dan curah hujan yang menjadi sumber energi air.


2. Energi Angin

Angin adalah gerakan udara yang terjadi ketika naik udara hangat dan udara dingin di bergegas untuk menggantinya. Energi angin telah digunakan selama berabad-abad untuk  kapal layar dan kincir angin untuk menggiling gandum. Hari ini, energi angin ditangkap oleh turbin angin dan digunakan untuk menghasilkan listrik.


3. Hydropower

Air yang mengalir ke hilir merupakan kekuatan. Air adalah sumber daya terbarukan, terus diisi oleh siklus global penguapan dan curah hujan. Panas matahari menyebabkan air di danau dan lautan menguap dan membentuk awan. Air kemudian jatuh kembali ke bumi sebagai hujan atau salju, dan mengalir ke sungai dan sungai yang mengalir kembali ke laut. Air yang mengalir dapat digunakan untuk memutar turbin yang mendorong proses mekanis untuk memutar generator. Energi  air mengalir dapat digunakan untuk menghasilkan listrik.


4. Energi Biomassa

Biomassa telah menjadi sumber energi penting sejak orang pertama mulai membakar kayu untuk memasak makanan dan menghangatkan diri melawan dinginnya musim dingin. Kayu masih merupakan sumber yang paling umum dari energi biomassa, tetapi sumber-sumber lain dari energi biomassa meliputi tanaman pangan, rumput dan tanaman lain, limbah pertanian dan kehutanan dan residu, komponen organik dari limbah kota dan industri, bahkan gas metana dari tempat pembuangan sampah dipanen masyarakat. Biomassa dapat digunakan untuk menghasilkan listrik dan sebagai bahan
bakar untuk transportasi, atau untuk memproduksi produk yang tidak akan membutuhkan penggunaan bahan bakar fosil.


5. Hidrogen

Hidrogen memiliki potensi yang luar biasa sebagai sumber bahan bakar dan energi, tetapi teknologi yang dibutuhkan untuk mewujudkan potensi ini masih dalam tahap awal. Hidrogen adalah elemen paling umum di Bumi.  Air adalah dua-pertiganya hidrogen, tapi hidrogen di alam selalu ditemukan dalam kombinasi dengan unsur lainnya. Setelah dipisahkan dari unsur-unsur lain, hidrogen dapat digunakan untuk menggerakkkan kendaraan, menggantikan gas alam untuk pemanasan dan memasak, dan untuk menghasilkan listrik.


6. Energi Panas Bumi

Panas di dalam bumi menghasilkan uap dan air panas yang dapat digunakan untuk pembangkit listrik dan menghasilkan listrik, atau untuk aplikasi lain seperti pemanasan rumah dan pembangkit listrik untuk industri. Energi panas bumi dapat ditarik dari waduk bawah tanah dengan pengeboran, atau dari reservoir panas bumi yang terletak lebih dekat ke permukaan.


7. Energi Samudera

Lautan menyediakan beberapa bentuk energi terbarukan, dan masing-masing didorong oleh kekuatan yang berbeda. Energi dari gelombang laut dan pasang surut dapat dimanfaatkan untuk menghasilkan listrik, dan energi termal laut-dari panas yang tersimpan dalam air laut-dapat juga diubah menjadi listrik.
Meskipun pada masa sekarang, energi laut memerlukan teknologi yang mahal dibandingkan dengan sumber energi terbarukan lainnya, tapi laut tetap penting sebagai sumber energi potensial untuk masa depan.


Mungkin cukup sekian wawasan yang dapat saya bagikan kepada anda, semoga dapat menjadi referensi yang berguna.

Andis Wijaya

Some say he’s was a good man , love kindness and to uphold the common interest

0 komentar: